Stationary and Area Sources Committee Activities OTC Stakeholders' Meeting April 13, 2021

Francis Steitz, NJ
Chair
Stationary and Area Sources Committee

Agenda

- 2020 Charge Review and Progress Update
 - Sector work
 - RACT
 - Episodic modeling
 - EPA Office of Air Quality Planning and Standards Engagement
 - Additional topics
- 2021 Charge Discussion

Reminder: 2020 Charge

- Sector Support:
 - Technical support for individual sectors begin with municipal waste combustors (MWC)
 - Develop a technical resource webpage that enables states to work from a common platform for rule and permit limits
 - Additional sectors, as determined by future charges
- RACT Support:
 - Collect, compile and distribute technical information to support state RACT analyses
- Episodic Modeling:
 - Develop a strategy for episodic modeling and clarify SAS's role in this effort
- OAQPS Engagement:
 - Identify opportunities to meet and brief OAQPS staff on the benefits of OTC model rules
 - Facilitate information exchange/open a dialogue on the feasibility for national action in targeted areas
- Continue to review data to inform focus and priority work for 2021 SAS Charge
- Support work of other SAS Committees

Provide Technical Support for Individual Sectors

- Municipal Waste Combustor Pilot
 - ~100 OTR MWCs, ~60 outside the OTR
 - Inventory of units and NOx emissions
 - >20,000 tons of NOx in OTR annually
 - New limits could reduce 6,700 tons of NOx annually in the OTR
 - Workgroup recommended additional NOx limits (24-hour 110 ppmvd and 30-day 105 ppmvd averaging periods)
 - Evaluated costs (\$/ton of NOx reduced) \$2,900 to \$6,100/ton
 - MWC is an environmental justice issue given locations of facilities
- Potential 2021 Charge items:
 - Consider policy approaches for MWCs based on report recommendations
 - Conduct additional pilots (small EGU or other sectors being considered)

RACT Support

- RACT Tool Development
 - Develop excel-based tool to track RACT work
 - Potential to transfer to web-based tool or analytical tool in the future
 - Facilitate timely updates of state activity relevant to ozone
 - Ability to sort and generate reports on current RACT levels by state, sector, or pollutant

		Source	CT	DE		ME	MD	MA	NH	NJ	NY	PA	BI	VT	VA
NOx Limits Summary Print Preview	Natura	50-100 (mmBtu/hr)	0.000, 0.00	LEA, Iow NOx, FGR	adjust combustion	Tune-up (20-50 MMBtulhr)	Tune-up	0.1	0.10 to 0.20	0.05	No limits	0.1	0.1	No limits	0.2
	Boiler	100-125 (mmBtu/hr)	0.15 - 0.43a; 0.10 - 0.30b; 0.10c	0.2	0.2	No limits	0.2	0.2	0.10 to 0.25	0.1	0.08 - 0.20	0.1	0.1	No limits	0.2
		>250 (mmBtu/hr)	[U.3UD; U. IUC	0.2	0.2	No limits	0.7	0.2	0.10 to 0.25	0.1	0.08 - 0.20	0.1	0.2	0.2	0.2
	Oil Boiler s	50-100 (mmBtu/hr)	0.43a 0.20 - 0.43b 0.10c Residual 0.25 - 0.43a 0.25 - 0.43b	LEA, LNB, FGR	Distillate 0.30 Residual Banned	0.3	No limits	Tune-up	0.12 (#2 oil); 0.30 to 0.50 (other oil types)	Distillate 0.08 Residual 0.20	0.08 to 0.2	Distillate 0.12 Residual 0.20	Distillate 0.12 Residual LNB & FGR	No limits	0.25 to 0.43
		100-125 (mmBtu/hr)	0.43a 0.10 - 0.43b	0.38 to 0.43	Distillate 0.25 Residual Banned	0.3	0.25	Distillate 0.3 Residual 0.4	0.12 (#2 oil); 0.30 to 0.50 (other oil types)	Distillate 0.10 Residual 0.20	0.15	Distillate 0.12 Residual 0.20	Distillate 0.12 Residual LNB & FGR	No limits	0.25 to 0.43
		>250 (mmBtu/hr)	0.43a 0.10 - 0.43b	0.38 to 0.43	Distillate 0.25 Residual Banned	0.3	0.7	0.25 to 0.28	0.12 (#2 oil); 0.30 to 0.50 (other oil types)	Distillate 0.10 Residual 0.20	0.15 to 0.20	Distillate 0.12 Residual 0.20	Distillate 0.25 Residual LNB & FGR	0.3	0.25 to 0.43

Episodic Modeling

- Modeling Committee conducting peak day/episodic modeling to accurately capture NOx contributors on High Electric Demand Days (HEDD) and to accurately quantify the benefits from peak ozone day strategies
- Modeling Committee supplied SAS with a list of targets for modeling peaking units
- SAS formed ad hoc workgroup to provide feedback on data
- Ad hoc workgroup developed a set of criteria that would identify appropriate emission units for initial modeling
- Workgroup discussed the transformation in power generation in the last five years, and the need to revisit the definition of peaking units to match with the new EGU operational modes
- Final data set reviewed by workgroup to update emissions and operating data

Office of Air Quality Planning and Standards (OAQPS) Engagement

- SAS Committee identified topics for engagement with OAQPS
- Held a call in March with OAQPS management
- Facilitate information exchange/open a dialogue on the feasibility for national action in targeted areas
 - Conversation focused on sector work (MWC/other)
 - Policies to improve regional consistency for RACT determinations
 - Updates to federal regulations
 - Agreed to share information on MWC, coordinate on NOx offsets, behind the meter generation, and hear from OAQPS on upcoming work

Additional Topics: Building Electrification

- Heating accounts for majority of building related emissions
- In addition to supporting OTC, information is useful for regional haze strategies
- Using the Department of Energy's ResStock modeling tool,
 SAS evaluated two heating system electrification scenarios
 - Replace #2 fuel oil furnaces with air source heat pumps
 - Replace natural gas furnaces with air source heat pumps
- Fuel oil scenario results show NOx decreased up to 57%
- Natural gas scenario results show NOx decreased 9%
- Heat pumps also reduce air conditioning related emissions and this may be evaluated in a follow-on analysis

Developing the 2021 Charge – Items for Consideration

- Develop technical information for new sectors identify 1 to 2 sectors
 - EGU's possible focus on small EGU
 - Peaking units
 - ICI boilers
 - Tank farms
 - Cement kilns
 - Non-traditional sources (building sector)
- Requested policy direction: technical sector work (MWC) will be provided to Directors/Commissioners at upcoming meetings – requesting input if SAS work should focus on new approaches (peak day partnership), previous approaches (model rules), or case-by-case basis?
- Coordinate with other OTC/MANE-VU efforts to inform inventories, modeling, and other OTC efforts.
- Assess Area Source inventory analysis